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A: Math. Gen.. vol. 9. No. 5. 1976. Printed in Great Britain. @ 1976 

Confinent corrections to scaling in the isotropic Heisenberg 
model? 

William J Camp and J P Van Dyke 
Sandia Laboratories, Albuquerque, New Mexico 87115, USA 

Received 4 November 1975 

Abslract. Confluent corrections to scaling are explicitly incorporated in the analysis of 
high-temperature series for the S = $ (quantum-mechanical) and S = 03 (classical) isotropic 
Heisenberg models on the FCC lattice. For S = CO, strong confluent corre\ctions are found in 
the susceptibility, the second moment of the correlation function, as well as the anisotropy 
crossover function. No evidence for confluent, non-analyticcorrections to scalingis found in 
our analysis of the S =$susceptibility, Our best value for the S = CO susceptibility exponent 
is y(w)= 1.422:$, which-taken with the best previous estimate 74) = 1.43-is consistent 
with universality. However, for S=$, we feel that (because of apparent non-confluent 
singularities) y is known no better than y($J=l.41-1.51. The S=CO correlation-length 
exponent is estimated to be v = 0.725 10.015, and the crossover exponent is estimated to 
be C$ = 1 -30*0.03. Finally, the S = CO correction-to-scaling exponent is found to be 
A1 ~ 0 . 5 4  h0.10. 

1, Introduction 

“le status of our understanding of critical behaviour in the spin-S isotropic Heisenberg 
model has recently been extensively reviewed by Rushbrooke, Baker and Wood 
(hhbrooke er a1 1974). A problem left unresolved by them was the apparent lack of a 
universal value for the susceptibility exponent y of the Heisenberg model: Pad6 
analysis of the S =$ series has yielded the estimate y($) = 1.43*0.01 (Baker er a1 
196% whereas, in contrast, estimates for S = 00 are no greater than y(m)= 1.405 f 0.02 
( h e r  et a1 1971), as IOW as y(~0)=1.36*0.04 (Lee and Stanley 19711, and more 

y(00)=1.375+:::: (Ritchie and Fisher 1972). Ritchie and Fisher (1972) 
p*oPsed that their estimate was valid for all S. However, in so doing they chose to 
Dore evidence for a larger exponent at S = $, citing the poorer apparent convergence 
Ofthes=iseries. h e  and Stanley concluded that their estimate y = 1.36 also applied 
*Or s=t. F h e v e r ,  Rushbrooke et a1 (1974) have pointed out that closely related 
methods Of analysis do not support this conclusion. 

we have re-examined both the S =$ and S = CO series using methods previously 
to study the spin-SIsing susceptibility (Camp and Van Dyke 1975a, Saul et al 

‘975) and pair correlation function (Camp et al 1975) which explicitly allows for the 
euknce of non-analflc confluent corrections to the dominant critical behaviour, as 
‘Or in the susceptibility, 

(1) x =xo/(l- Tc/nY+xI/(1 - Ww-*’. 
‘%s Supported by the US Energy Research and Development Administration, E m A .  

73 1 
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Although such corrections are predicted by renormalization goup theory to be 
important corrections to the dominant scaling behaviour (Werner 1g72), no previo~ 
attempts to identify and remove these corrections have been made in the case of the 
Heisenberg model. In view of the comparative shortness of all series analysed, 
results reported below cannot be regarded as completely conclusive. 

Dreviously estimated for S = 00 and S=i is due to the presence of rather strongcon&lent 
brrections to scaling in the S = 00 susceptibility. Nevertheless, incowration of such 
corrections does not completely satisfactorily lead to a single, best universal value for y. 
This is apparently due to the importance of non-confluent corrections which bve 
eluded successful analysis (see, however, Rushbrooke et all974, p 327). On thispoint 
it is worth noting that although for S = 3 the estimate y($) = 1.43 by Baker etal (1967) 
represents a reasonable ‘best’ value, it does indicate a bias toward lower values for y. 
Indeed, extrapolations based on both simple and extended ratio methods (as wen as 
estimates based on the corners of the very PadC tables upon whose centres Baker 
(1967) based their estimates) lead to somewhat higher estimates for y($) in the range 
&) = 1.45-1.50. This poor convergence is not due to confluent corrections (we find 
none for S = $), rather it must be due to non-confluent singularities. For S = 00, &e 
results of previous analyses appear less confusing in that estimates based on simple and 
extended ratio methods as well as PadC estimates are found to be mutually consistent, 
fairly well converged, and in the somewhat narrower range $co)=l.38-1.41. 

We summarize our susceptibility analysis as follows. (i) We find no evidence for 
confluent corrections at S = $ based on extrapolation of available ninth-order series. (i) 
Using the confluent singularity analysis described below, and accepting the estimate of 
Baker er al(1967) for the critical point, we find y($) = 1.43:::;; but with considerable 
scatter. (Z) Using the confluent singularity analysis, but adjusting the critical point to 
minimize the scatter in estimates (see below), we find y($) = 1-50i  0.02 (With mmpm 
lively little scatter). (iv) For S = 03 we use available tenth-order series, and all methods 
employed point to a rather strong confluent correction term. The correction exponent 
associated with this term is given by A, =Os54 f 0.10 (see below). (v) Most of the $=Or, 
analysis performed points to a critical point within 0.1% of the previous estimatesby 
Ferer et al(1971) and by Ritchie and Fisher (1972). For critical points h this rangewe 
obtain estimates, with relatively little order-by-order scatter, the a g e  
y(CD)=1*42:::::. (vi) There is slight evidence for a significantly different s=@ critical 
point with correspondingly higher exponent $03)=1-48. In this case the correction 
exponent is unchanged, but the strength of the correction term is greatly enhanced* 
However, in the light of analysis of the second moment of the pair c0rre1ationfunctioo 
described below which strongly favours the accepted critical point, we believe that the 
evidence for y(a)=1-48 is weak indeed. 

With regard to points (ii) and (iii) above, since we find no evidence of a 
singularity we would not propose that for S = $ the results of our extended are 

any more valid than those based on simple ratio and Pad6 analysis. Indeed 
reflect the already existing dichotomy in the results of straightfowud ratio and 

We conclude from our analysis that much of the difference between the 

analyses which we discussed above. d 

sen’ 

For S = CD we have also re-analysed existing tenth-order series for the seco 
moment of the pair correlation function (Ferer et al1971) and tenth-order 
anisotropy crossover function (Camp and Van Dyke 1974). The analysis Of 

again confirms the existence of confluent corrections to scaling.  or both *e 
moment and the crossover function, no evidence is found for a critical 

second 
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e t l y  different from that previously estimated for S = 00 (Ferer er al 1971, 
m e  and Fisher 1972). The estimates for the correction exponent are quite scattered 
(espe~auy in the case of the crossover function), but certainly consistent with the 
d a t e  A,=0*54*0-10 obtained from the susceptibility. From the second moment 
analysis we find the correlation length exponent to be v = 0.725 f 0.015 (compare with 
p.yioa estimates: v = 0.705 * 0.008 (Ritchie and Fisher 1972) and v = 0-717 * 0-007 
pmr er al 1971)). Ushg the scaling relation q = 2 - ‘y/v we estimate the anomalous 
melation exponent to be q == 0.04, with large uncertainty. The anisotropy crossover 

Q is estimated from the crossover function x(g ) - ’ax (g ) /ag (g  + O),where g is 
the spin anisotropy parameter (see below). The crossover exponent is found to be 
,#=1.30&0.03, which because of corrections to scaling differs considerably from the 
previous estimate 4 = 1.25 based on straightforward ratio and Pad6 analyses (Pfeuty er 
QI 1974). 

2. Methods and assumptions 

’&e basic assumption of the analysis presFnted herein is that corrections to the 
dominant scaling behaviour are either confluent with the dominant scaling behaviour, 
or analytic, or both. As we have discussed, there is ample evidence, for spin-half 
especially, that this assumption is not completely valid. However, since (on the 
&-packed FCC net) confluent corrections should generally dominate non-confluent 
ones, and since the short length of available series prohibits any reasonable accounting 
for non-confluent corrections, we accept the assumption unchanged. 

Confluent, non-analytic corrections to scaling were first predicted on empirical 
grounds by M Wortis (1970, paper presented at Newport Beach Con$ on Phase 
Transitions, January 1970, unpublished). The justification of Wortis’ arguments by 
detailed renormalization group calculations has been presented by Wegner (1972), who 
showed that the dominant scaling behaviour is generalized to a scaling function of 
Several variables. For example, in the case of the pair correlation function it is expected 
that 

G(R)  R-(d-2+1)G(RrY, RHVIA, Rgv/d, R u - ~ I ~ I  , . * J  (2) 

where d is the lattice dimension, H the magnetic field, A ( = & + Y - a ) )  the gap 
exponent, U the leading ‘irrelevant’ field, and r (  = 1 - T,/T) the reduced distance from 
hCdkal point. The variables q, v, 4, and g are as above. The susceptibility is 
Obtained as the zeroth spatial moment of G ( R )  using the fluctuation theorem. The 
moments Pm are defined as 

Bychan@ng the integration variable to Rr” in the integral, we obtain 

(4) -v(m+2-1) M,(H/r*, - g/r+, UT*:. . .I. P m = r  

lhesraliQgfunction 6 is assumed to be an analytic function of its arguments; hence also 
‘‘W ‘&e three functions of interest herein-the susceptibility, second moment and 
~verfunCtion-may all be derived from equation (4). Consider first the isotropic 
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(5) 
?-(*-l)V (XoSXluUTA1+ . . .). 

We identify y as y = (2- q)v and see that a secondary divergence T - y * * ~  ispredicted. 
Likewise the second moment is given, for g = H =  0, by 

(6) 
p,z = T-(y+2V)(Mz,o+ M2,uuTA1 + . . .). 

The crossover function is given by 

= T-'(x1$xo)(l  AUT*^ +. . .) (7) 
where we have used the Taylor series representation for GO(xl, x2, . . .). ~ ~ ~ ~ k ,  
for a given model renormalization group theory predicts confluent ~ ~ e ~ o ~  to 
dominant scaling with the same exponent for alt functions, but with comedon 
litudes varying from function to function. 

Two methods of series analysis have been developed and successfully apphd to 
analyse and remove confluent corrections. In the method of four-fits (Moore etai 1974, 
Saul et al 1975, Camp and Van Dyke 1975a) the value of T, (or y )  is specified and 
successive estimates for y (or Tc), Al, ,yo, and x1 are obtained by direct fitting of 
equatian (1) to series coefficients. In the Baker-Hunter transformation (Baker and 
Hunter 1973, Camp and Van Dyke 1975a) T, is employed as an inputparametertoa 
non-linear series transformation which provides accurate estimates for 'y, AI, ,yo, and,yI. 

The four-fit procedure involves the solution of four simultaneous non-hear 
equations for the fitting parameters in terms of four consecutive coefficients, fn-3,fn-2, 

fn-l, and f n ,  of the high-temperature series involved. Thus sets of estimates are 
obtained for n = 3,4,5, . . . up to the highest order for which the series coefficient is 
available. 

The Baker-Hunter transformation is described in some detail by Camp and van 
Dyke (1975a). Here, we outline it only briefly. Consider equation (5 )  above with 
7 = 1 - K/&(K = J/kT) .  Introduce a variable f = -In( 1 - K/K,). Using the Jd 

terms in the high-temperature series for ,y(K), form the first N terms in the series for 
x(()-xo eYS+xl e(Y-A1)f Multiplythenthtermintheseriesforn =o, 1,2,. . .Nbyn! 
to form the series for the auxiliary function a($) =xo/(l - y f )  + x l / [ l  -(7-Ad8 The 
poles of the direct Pad6 approximants to S(() determine y and AI, as Well as *e 
exponents of any weaker confluent singularities; and their residues determine ? 
amphdes XO, xl, etc. In particular, if x is exactly of the form in equation (519 tow? 
analytic corrections, the sequene of [ N -  1/w Pad6 approximants should Provide 
especially rapidly convergent estimates (Baker and Hunter 1973, mP andVmDyke 
1975a). (See, however, below.) 

In the case of the spin-S Ising model both methods have yielded accurate estimay 
for the critical parameters which provide striking evidence for the UniVedv (yi 
spin) Of y and AI in the Ising model (Camp and Van Dyke 1974, Saul et 1975) 
addition studies of the second moment of the FCC spin-S king pair codation 
(camp et d 1975) confirm the structure of the corrections to scaling as as 
universality with spin of the correlation-length exponent, Y. The Heisenberg "F 
analysed herein are uniformly more poorly converged than their counteq arrm 
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seies. Nonetheless we believe the results herein provide clear evidence for the 
d e n e  ofconfluent corrections at S = CO, and for their absence at S=f. 

our four-fit and Baker-Hunter analysis we treat the critical point 
g(=JlkTA as an input parameter. we may choose K, to maximize the apparent 

of the sequence of estimates for the critical-point parameters; or we may 
K, to a relatively narrow range about the best previous estimates from ratio and 

padc analyses and examine the convergence and spread of estimates in that range. 
Further we can choose for empirical reasons to emphasize one aspect of the analysis. 
$%en all these options are taken into account, the range of allowed values, say for 7, is 
ather large. However, if we are willing to restrict severely the range of allowed values 
for K ,  the apparent spread in exponents is quite narrow-comparable to the ranges 
found in previous biased analyses (see Rushbrooke et a1 1974). 

3. 'ibe Rsmiltonian and series 

ne anisotropic quantum-mechanical Heisenberg Hamiltonian is given by 
3 --m= (K /S2)  qps;sy. 

(ij) w = l  

For q1 = qz = q3 = 1, we recover the isotropic Heisenberg model. For S = (the full 
quantum limit), ninth-order series in K are available for the isotropic susceptibility on 
the FCC net (Baker er a1 1967). For S =CO, tenth-order series for the anisotropic 
wptibility have been derived as analytic functions of ql, q2, and q3 by Camp and Van 
Dyke (1974) on all standard lattices. In addition these authors have derived series for 
thepaircorrelation function and moments (again as analytic functions of ql, q2, and q3) 
bough ninth order on the FCC net, and through tenth order on the remaining standard 
WO- and three-dimensional lattices (Camp and Van Dyke 1975b). Using the identifica- 
lkm 71 = 1 + g, q2 = 1 - g, q3 = 1 (rhombic anisotropy) or q1 = 1 + g, 772 = 773 = 1 -ag 
(axial anisotropy) we may easily construct crossover functions (see further Pfeuty er a1 
1974). For S =;, the anisotropic series, as well as the isotropic series for the moments 
and correlation function, are of insufficient length to be analysed by the methods used 
herein. 

Since the various series analysed are in the literature, we do not repeat them. One 
is the crossover function, for which Pfeuty et a1 (1974) only derived the FCC 

series thmugh eighth order. For completeness we give, in the relevant section below, 
theseries coefficients through tenth order which are used in our analysis. 

4* MY& of the spin-half sosceptibility 

Ine analysis of this series is thoroughly discussed by Baker er al (1967). The 
mncluion by these authors that Kc($) = 0.2492 and y($) = 1.43 *0.01 rests on three 
"Of results. First (Baker et a1 1967, method (i)) the [6/2], [5/31, [4/41, and C3/51 

aPPK"ants, the centre of the outermost diagonal of the Pad6 table, to 
d'nk)/dK yield the estimates Kc(+) = 0.2492k 0.0001, and ~ ( a )  1-428*0.006. 
However,it should be noted that the [8/0], [7/1], [2/6], and aPProhanG tothis 

which employ the Same number of coefficients from the series as those 
mentioned above, provide estimates Kc(;) = 0.2503 f 0-0002 and = 1.484 * 0.012. 
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n + m (neglecting Further if we average over all [n/m] Pad6 approxhants with N =  
obvious defects) we obtain the succession of estimates ( ~ ( i ) ) ~  = 1.214, 1.313, 1.3ss 
1.460, and 1.456 for N=4,  5, 6, 7, and 8,  respectively. The apparent & 

= 1-46t::g is typical of the higher-order averages. Likewise, we a n  average 
Kc($) to find (Kc& = 0~2417,0~2454,0~2465,0~2501,0~2497 for N=4,5,6,7, and 
8, respectively. One can reasonably argue that the centre of the Pad6 tableissome& 
found to be more rapidly converged than the corners, SO that one should not weigh the 
cOfner estimates strongly. Nonetheless the higher exponents found in averagingovera 
diagonal have a smooth order-to-order variation and certainly indicate a 
reasonable spread about the central estimate, y = 1-43, quoted by Baker eta/ (1967). 

n e  second piece of evidence used by Baker et 71 (1967) was the remark& 
consistency between the estimates y($) = 1-43 and K&) =Os2492 (Baker et Q/ 1967, 
methods (5) and (iii)). The Pad6 approxiinants to (K -0.2492)d In X/dK approad 
1.430 at K=0.2492 with high precision for nearly all higher-order approximan&. 
Similarly the dominant poles in the Pad6 approximants to reproduce 
Kc($) = 0.2492 with high accuracy in nearly all higher-order approximants. However,% 
noted by Baker eta1 (1967), this apparent high convergence is deceptive since abigher 
(lower) choice of K& produces consistent, well converged higher (lower) estimatesfor 
y($). Therefore the evidence from these methods is not as strong as that from the ht 
method above. 

Perhaps the strongest evidence for y($) = 2.43 presented by Baker eta1 (1967)layin 
their analysis of 

as K Kc($) (Baker et al 1967, method (iv)). Using the [4/2], [5/2], [4/31, and[3/4] 
approximants they find that y = 1.427 * 0.008 nearly independent of the choice of Kh 
over the range 0.246dKC($)s0-249. This is quite good evidence for ~ = 1 * 4 3 .  
Nevertheless, as with the analysis of d In X/dK, the [6/0], [7/0], [6/1], and [1/61 
approximants paint a somewhat different picture. Namely, y= 1.495*0.Q15, also 
independent of the choice of K, in the above range. As with the logarithmic-denvabve 
analysis above, the average is (y($,)) = 1.46* 0.04. Here the average and the spreadare 
explicitly independent of Kc($) in the range 0.246 s K, G 0-249. Seen in this light, 
evidence from method (iv) of Baker et al is nearly identical to that from theirmebd(i): 
considerable evidence for y = 1.43 or y = 1.49 with a 'compromise' choice Y=1'46. 
We have re-examined their series analysis of 

and conclude that nothing in the above discussion is changed by extension oftheir range 
for Kc($) to,0.24606 Kc($) d 0.2520, i.e., double the range discussed by Baker 
(1 967). 

Finally, with regard to these results, it is useful to compare with Similar 
the well behaved spin-half Ising susceptibility series on the FCC net. The analyses Of 

analyses of 
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6y pa& approdants are P h d a r l y  clean for this model. For example, the Pad6 
d$ of the latter function, using any [ l / m ]  approxhant with 1 + m = 6,7,8,9, and 
iO,yiel&estimates for YI Of ~~249*0~001,1~246*0~002, 1-2477*0.0005,1.2476* 
0.0003, and 1 -2476 * 0.0003, respectively. The quoted uncertainty represents the sum 
dthemcertainty due to the variation of 71 from approximant to approximant at fixed 
&,dfixed I + m, and the uncertainty due to the variation of -yI with the assumed value 
of ~f in the range 0*09411GK~~0*09597 centred about the 'best' estimate 
g!=o.09504 (Camp and Van Dyke 1975a). In particular no evidence is found in the 
analysis of this series to favour either the centre or the corners of the Pad6 table. 
Convergence of the [ l /m]  approximants apparently does not depend on 1 and m 
separately, but only on the sum I+m. The implication of this result is that it is 
premature to discard the estimate 2) = 1.48 from the corners of the Pad6 tables in 
 VOW of the estimate y(4) 2: 1-43 from centres of the tables. 

Baker et al(1967) do not explicitly discuss ratio analysis of the S =4 susceptibility, 
except to state that ratio analysis generally confirms the Pad6 analysis. We have 
examined the ratios of successive series coefficients using linear extrapolants, higher- 
order Neville tables and the method of end-shifts. Analyses were performed: (i) with 
neither y nor K, specified; (ii) specifymg K, and estimating y; and (E) specifying y and 
estimating K,. When neither K, nor y are specified both higher-order Neville tables 
andend-shift estimates are too scattered to be useful. However, straightforward linear 
extrapolants provide estimates {y($); Kc($)} = (1.363; 0.2466}, (1.397; 0-2479}, 
I1.440; 0*2494}, and (1.454; 0.2498) in sixth, seventh, eighth, and ninth orders, 
respectively. These estimates, albeit poorly converged, are apparently increasing 
beyond (y&; Kc($)} ={1.43; 0.2492). The biased analyses, methods (ii) and (E), are 
typified by the linear extrapolant estimates for y($), given Kc($). The best behaved 
q u e n e  is perhaps that for Kc($) = 0.2497 for which we find the estimates y ( f ) =  1.50, 
1*45,1.42, 1-43, 1-44, 1.45, 1.45, and 1.45 using orders 2 through 9, respectively. 
However, convergence of the sequence does not fall off very much in the range 
0.2491 6 Kc($) G 0.2505 for which y($) varies from 1.43 at the lower end of the range to 
1.48 at the upper end. Thus, as with various Pad6 methods, we fail to obtain any single 
kt estimate for ~ ~ ( $ 1  or y(+) from ratio analysis. 

4.1. WIuenr-singulario analysis 

Bemethod of four-fits breaks down for the S = f susceptibility. A problem is that the 
?medon exponent AI is poorly determined (i.e., exhibits great order-to-order varia- 

and fails to remain within any physically reasonable range). This is apparently due 
fotbefact that confluent corrections are either very small (and thus poorly determined 

based on short series) or completely absent. This interpretation of the 
br*down of four-fits is consistent with the Baker-Hunter analysis which produces no 
secondary singularity (or, at least no non-analytic correction-see below), but which in 

, As Pointed out by Baker and Hunter (1973) for functions With only m~fluent 
'Warities the sequence of [ N -  l /Nj Pad6 approximants to S(5) provides particu- 
h'yraPidb convergent estimates for the amplitudes and exponents of the singularities. 
I'ouandY~k of the spin-S Ising susceptibility (Camp and Van Dyke 1975a) we thus 
lehed mainly on analysis using [ N -  l/w approximants to the transformed series 
So-althOUgh, for that model, the table as a whole agrees well with the [ N -  l/M 
''We. For test series with analytic noise and/or non-confluent corrections in 

to four-fits does not break down completely. 
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addition to confluent singularities, we have since found that it is often best to rely on 
trends involving the Pad6 table as a whole, rather than just the [ N -  1/1vlSequene. For 
the spin-half Heisenberg susceptibility there is no real difference &heen 
[ N -  1/M sequence and the remainder of the table. However for the spin- 
susceptibility the ‘best’ choice of K, based on convergence of the Pad6 table a~ a whde 
fa2s to agree with that based on the convergence of the CN-l/N q u e n e  of 

approhants. Furthermore, the two convergence criteria lead to markedly Merea 
estimates for ~ ( c o ) .  We shall pursue this further below in the discussion of &e 
susceptibility. 

In table 1 we list the Baker-Hunter estimates €or y and xo obtained by assuming 
K, = 0.2519. This set of results exhibits the best apparent convergence obtahedformy 
choice of Kc($), based both on the [ N -  1/M sequence, and on the Pad6 table as a 

- 
Table 1. Baker-Hunter analysis of ,&) with Kc&) = 0.2519. Most a p p r o b &  
defects in the complex plane (see text). In each entry y is listed above ,yo. No real poles 
representing weaker singularities were found. 

2 3 4 5 6 I 

1.442 1-498 1.504 1.499 1.552 1.613 
1.108 1 *005 0.997 1.008 

1.448 1.504 1.502 1.504 1.484 
1.095 0.996 1.003 0.997 1.033 

1.742 1 ~499 1.504 1.500 
0.508 1.008 0-997 1.004 

1.705 1.559 1.481 
0.568 0.862 1.034 

- 1.656 
0.644 

6 

whole. The apparent value of -&) is 1.50 f 0.02, and the estimated dominant 
is XO= 1-01 *O*O2. The quality of apparent convergence is retained the? 

Kcb.) = O m 9 *  0.0003, and falls off quite gradually outside that range. For &@’ 
the above range the central estimates for y lie in the range y ( i )  = 1-50*@01- Altbo@‘ 
no confluent shgularities are detected, all approximants with three or more poles ate 
marred by paks of complex poles located closer to the origin than Y-*. polesare 
nearlyacancelled by associated sets of zeros, so that the residues of the defects are 
o(10- 1 or less. As discussed by Camp and Van Dyke (1975a) such cOW1eXdeferaia 
the transformed series can be indicative of interfering non-confluent &@’”’* 

A very significant aspect of table 1 is the value of Kc($). This Value, @251971smore e Baku- 
than 1% away from the best choice &($) = 0.2492 of Baker et a1 (1967). 



Confluent corrections to scaling in isotropic Heisenberg model 739 

Hmter analysis Of X@ with Kc(;) set equal to 0.2492 is presented in table 2. These 
ds similar to those in table 1 in that every entry with three or more poles is 

by a complex defect structure. However the results are more complicated than 
those of table 1 in the following ways. First the estimates for y( i )  are scattered m d y  
&,,t distinct values: y = 1-42*0-01 and y = 1-46*0.01. The entries with - 1.46 have much stronger defects than those with y = 1 -42-*icaJly the residues of 7- 
be defects for y = 1-46 are about two orders of magnitude larger than those for 
y= 1.42. Further, many (five out of seven) of the entries with y = 1.42 also show a 
lepr&cible second pole corresponding to a correction term X ~ T - ( ~ - * ~ )  with x1 = 0.1% 
0.19 and AI 2: 1.03-1.07. This is UInSktent With an analytic correction term in the 
WptiMity. As in table 1 we interpret the complex defects in the Pad6 table as 
indicating the existence of rather important non-confluent singularities in ~($1. 

Table 2. Baker-Hunter analysis of ~(4) with Kc& =0.2492. As in table 1, most approxi- 
mants have defects in the complex plane. Those entries marked with an asterisk have 
especially strong defects. In each entry y is listed a b v e  ,yo. Those entries marked with a 
dagger have a secondary pole with AI = 1.0 (i.e., an analytic correction). 

3 4 5 6 7 
M 

~~ 

1.335 1.464 1.446 1-415 1.413 1.490 
1.084 1.009* 1*045* 1-115t 1.121t 0.891 

1.398 1,446 . 1.473 1.413 1.415t 
1.142 1*039* 1*007* 1.121t 1.115 

1.555 1.419 1.414 1.458 
0.745 1.100 1.114t 1*013* 

1.589 1.415 1.419 
0.671 1.112 1.100 

1.492 
0.874 

- 6 

we summarize our ‘confluent-singldarity’ analysis of x( i )  as follows. (i) We find no 
q e h t  value for &): as with standard analyses, evidence is found for y($ in the 
broad range y = 1-41-1 e5 1. (ii) We find no evidence for any confluent, but non-analytic 
fanedon to scaling. (iii) We find rather strong hints that non-confluent terms are the 
w-t corrections to scaling in ~( i ) .  (iv) It seems reasonable that such non- 
cOnfluents~gularities could account for the failure of methods which do not allow for 
htoProduce convergent estimates for the critical-point parameters. (v) At best, if 
we.‘esuire that Kc($) lie within a reasonable range (say *0.4%) about the best previous 
%ta,We can conclude that y ( i )  is consistent with the choice y= 1-43 due to Baker 
ad(1g67). (vi) If we remove the restriction on Kc(;) we find that a somewhat larger 
?!Or !&-namely Kc($) = 0.252-leads to the best apparent convergence. For 
“h range we estimate y(i)==1.50*0.02. (vii) In the Iight of the absence of 

Shqgdarities the detailed estimates provided by the Baker-Hunter analysis 
hd be given no more weight than previous ratio and Pad6 analyses. 
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5. The spin-infinity Heisenberg model 

This model is empirically found to be much better behaved than the quantum me,&.- 
&, spin-half version of the Heisenberg model. The biased end-shifted ratio 
for yvary from r(m)==1.389 at Kc(CO)==O*31476 to y(w)= 1.405 a t K , ( ~ ) q 3 . 3 1 ~ ~  
n e  order-to-order scatter in the y estimates is less than 0.001 for orders eight, 
and ten throughout the range quoted. The results of Neville-table analysis of ratios 
(Ferer et a1 1971) are in very good accord with end-shift analysis. 

Despite the apparent smoothness of the sequence of Neville estimates, Ferer eld 
(1971) were able to discern evidence that the series was not completely for 
Neville-table analysis. The point is that Neville-table and end-shift andyes only 
converge rapidly for sequences of ratios of the form 

R n  =xn/xn-l = ( ~ , ) - ' [ l + ( y - l ) / r l + g z / n * + g 3 / n ~ + .  . .I. 
Neville analysis of sequences in which this analytic dependence on n-l is replaced by, 
for example, K& = 1 + (y - l)/n + a/n3'2+ . . . , show distinctive trends from order- 
to-order, as discussed by Ferer er al (1971). These authors noted that the Neville-table 
analysis of ~ ( w )  showed evidence for just such a non-analytic dependence on n-'. As 
discussed in detail by Camp and Van Dyke (1975a), non-analytic dependence on n-' 
(namely KcRn = 1 + ( y -  l) /n + a/n + . . .) is implied by a confluent, but non- 
analytic, correction term of the form X ~ T - ( ~ + * ' ) .  Thus, already in the discussion of the 
spin-infinity moments and susceptibility by Ferer et a1 (1971), we find evidence that 
confluent corrections to scaling enter the S = CO Heisenberg critical behaviour. 

5.1. Susceptibility analysis-four-fits 

In contrast with S =by there is no difficulty in obtaining reasonable four-fit estimatesfor 
the S = 03 susceptibility. In tabIe 3 we list the estimates for the parameters xo, X I ,  
AI of equation (1) obtained by assuming K,(a)-' =3.174 (K,(00)=0*315W 
KC(W)-' = 3,175 (Kc(w)=0.31496), and K,(oo)-' = 3.176 (K,(c0)=0-31486) (Which 
bracket the 'best' value, K,(oo)-' = 3.175, of Ferer eral(l971)). Wecannot,aps&k$ 
favour any of these three sequences terribly strongly over the others. However, the 
sequences with Kc(a)  equal to 0.31496 and 0.31506 are somewhat smoother thanthat 
with K(w) equal to 0.31486. For &(~0)=0.31500 thelast two setsof four-fiteswt6 
are virtually identical. They are y = 1.4296, A1 = 0.543, x0 = 0.2296, andx1 =o*1036* 
For values of &(CO) outside the range [Os3 1486,0.3 15061 apparent convergence Of the 
four-fit sequences falls off rather noticeably. We thus quote &(w)=0-3150*O*Do2, 
y=1*43*0.03, A1=0*54=t0*10, x0=0.230~0.050, and x1=O*104*O*02 as Our 

fow-fit results. The uncertainties listed are no more than measures of the range Over 
which four-fit sequences are reasonably smooth. 

5.2. Susceptibility analysis-Baker-Hunter transformation 
ed se& 

The best overall convergence of PadC analysis of the Baker-Hunter transform 
is attained when values of &(a)-' in the range 3.175 4 K,(oo)-' C 3.176 are 
Perhaps the 'best' PadC table is that for K,(oo)-' = 3.1755 ( ~ , ( c o ) = 0 * 3 ~ 4 9 ~ ) ~ w b i c ~ ~  defe&Ve for display in table 4. Even in table 4 the [N/2]  and [N/3] approximan& are 
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Table 3. Four-fit analysis of x(C0). Estimate of critical parameters obtained using Nth order 
series for N = 5 through 10 are given. 

0.31486 5 1.394 0.750 0.267 0.076 
6 1.415 0.558 0.242 0-090 
7 1.433 0.467 0-219 0.108 
8 1.415 0.572 0.242 0.091 
9 1-406 0.674 0-254 0-087 
10 1.403 0.712 0.257 0-088 

0.31496 5 1.400 0.720 0.262 0.079 
6 1.427 0.523 0.230 0.100 
7 1-452 0.433 0.199 0- 127 
8 1-432 0.507 0.224 0.106 
9 1.422 0.575 0-238 0.097 
10 1.421 0.583 0.239 0.097 

0.31506 5 1.406 0.692 0.257 0.083 
6 1.440 0.495 0.218 0.112 
7 1.473 0.411 0.177 0.147 
8 1.452 0.460 0-203 0.125 
9 1.442 0-502 0.216 0.115 
10 1444 0.492 0.214 0.116 

most vaiues of N, However the ten ‘centre’ approximants are very nicely behaved. 
Using them, we estimate y = 1-42-0.01, A1 = 0-53-0.02, xo = 0.242:::;, and 
~1=0*09’:::;. The asymmetrical uncertainties reflect a gradual, but noticeable trend 
withincreasing N+ M toward higher values for y and lower values for AI, ,yo, and XI, as 
h a t e d  from [N/MI approximants. If the choice &(CO)-’ = 3.1755 is replaced by 
3.175 (3.176) apparent convergence worsens slightly, and the central estimates become 
7’1.43 (1.41), A1 = 0.49 (0.62), xo = 0.22 (0.25), and x1 = 0.10 (0.08). Thus, appar- 
ent convergence is sufficient to quote y(;a)= 1.42 f 0.02 and A, = 0.53f:::g. These 
estimates agree quite well with the four-fit estimates described above. 

Before going on to discuss the second moment of the correlation function, we 
b-ms briefly a quirk in the Baker-Hunter analysis. As mentioned above, for well 
khved series (such as that of the spin-infinity Ising susceptibility) the original 
@nvergence criterion of Baker and Hunter (1973) based on the sequence of [N-  1/M 
@roldmants to S(f) agrees well with that based on convergence of the whole table, 
andmay even converge a little more quickly. However, this is not the case for the S = 03 
Hehaberg susceptibility. With &(00) -~  = 3.1 730 (Kc(a)=0-31516) the [3/43 and 
[4/51 approximants yield identical results, namely y(a3)= 1.425 and AI = 0.533. 
worse let, apparent convergence of the entire [ N -  l/N sequence is opthized With 
q@)- =3-1650 (Kc(a)=0.31596) forwhich the sequence of estimatesfor y from the 

through [4/5] approxhants is 1.49, 1.48, 1.49, 1.48, while the sequence of 
‘Iatd estimates for A, is 0.52, 0.54, 0.52, and 0.53. The point here is nof that 
Re(eo)’o*31596 is a reasonable choice, but that the series for x(a) is not terriby ‘clean’, 
and Probably has non-confluent corrections of some consequence. As pointed out 
a60vehr test series when the [N-l/NJ sequence convergence criterion disagrees With 
‘overdhble convergence criterion, the latter is generally a more faithful s i d e  to 

+0.02 +0.01 

behaviour. 
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Table 4. Pad6 approximant analysis of the Baker-Hunter transformation of the 
dm). The critical point estimate &(~+0*31491 is employed in the transfomation 
Pad6 tables for 7, AI, xo, and XI are given sequentially. 

M\ 
3 4 5 6 7 8 

2 1-413 1-126 1.406 1.551 1.366 1.395 1.399 
3 1.390 1.406 1.423 1.414 1-417 1.419 
4 1.370 - 1.414 1-416 1.420 
5 1.431 1.377 1.417 1.420 
6 1.413 1-400 1.419 
7 1.386 1.406 
8 1.637 

- 
AI 

2 3 4 5 6 7 8 

~~~ 

2 0.618 - 0.756 - 1.065 - 0.840 
3 0.898 0.648 0.555 0.605 0.569 0.545 
4 - - 0.604 0383 0.504 
5 0.843 - 0.569 0.500 
6 - - 0344 
7 
8 

- 

xo 

2 3 4 5 6 7 8 

0.254 0.283 0.293 0.271 0.267 2 0.248 0.383 
3 0.272 0.254 0.247 0.246 0.241 0-239 
4 0.288 - 0.246 0.242 0.237 
5 0.230 0.285 0.241 0.236 
6 0.251 0.265 0.238 
7 0.284 0.259 

x1 - 
\ 

8 4 5 6 7 2 3 
--c- 

0019 - 0.019 - 0.083 - 2 0.088 
3 0.102 0.083 0.098 0.089 0.091 0.090 
4 - - 0.092 0.091 0.080 
5 0.467 - 0.09 1 0.079 
6 - - 0.090 
7 - - 
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53. Analysis of the second moment of the correlation function 
A@r&ig to equation (6) we expect the second moment, p2 ,  of the pair correlation 
Mdon to have a dominant singularity with exponent y + 2v and a secondary singular- 
aywhich diverges with exponent y + 2v - AI. We have analysed p2,  but have preferred 

analyse the reduced second moment f i 2  = p2/x since it removes the problem of 
choosing y in order to find v and AI. Nevertheless, within the accuracy with which we 
bow y, analysis of p2 itself fully confirms that of f i 2  discussed herein. 

According to equations (5 )  and (6) we expect that 

F2(7)=T-2v(CL2,0+p2,1TA'+ . . .). (9) 

mis confirmed by analysis'using confluent-singularity techniques. In fact, if anything, 
apparent convergence of the analysis is better for f i 2  than for either x or pz .  

First consider the Baker-Hunter transformation. The best apparent convergence of 
the Pad6 estimates for 2v occurs when K,(co)-' = 3.1755 (Kc(co)=0.31496) is used in 
the transformation. The PadC table with this choice of &(CO) is displayed in table 5.  The 
!&&-order diagonals are all consistent with the estimate 2v= 1.440f 0-004. The 
apparent convergence of the estimates for the remaining critical parameters is not 
nearlyas good: for AI we estimate AI = 0*6::::, while for the amplitudes pz,o and pz,l we 
respectively estimate pz,o = 2-8 f 0- 1 and p2,1 = 1.2 f 0.1. This choice of K,(m) is just 
that which optimized convergence of the Baker-Hunter estimates for y The scatter in 
the estimates of AI is disconcerting. However, it should not be of too much concern. 
For, by choosing &(a)-' = 3.1750 (Kc(co)=0-31496) as in table 6 we only slightly 
change the 'best' estimate for 2v from 1.440 to 1.460, and do not increase seriously the 
scatter in the estimates. However, a noticeable improvement in the estimates for A, is 
obtained. Ignoring the [4/5] approximant (which is defective) we find quite ood 
mnvergence throughout the centre of the PadC table, and would quote AI = 0.53-0:10. 

Insummary the Baker-Hunter analysis of fi2(m) agrees with that of X(a) as regards 
the 'best' choice of &(a), and produces estimates for the correction exponent Al in 
"iable accord with those from X(o0). The best value of vis v = 0.725 f 0.015, while 

estimates for AI,  pz,o, and pz,l are A1=0-,55i0.10, p2,0=2*7*0*2, and 
91"1.25*0.15. Finally we note that in contrast to the Baker-Hunter analysis of 
@),that of $,@) shows no evidence from [N-l/N Pad6 analysis for any larger value 
ofKc(a). In particular, the choice &(a)=0.31596 leads to scatter of order 0.10 in the 
[ N - ~ / N I  estimates for 2v. 

The four-fit analysis of &(a) confirms generally that by Baker-Hunter transforma- 
tion. In table 7 we show the sequence of estimates found by setting &(a)-' equal to 
3'1750. The sequence is quite smooth, and is consistent with 2v= 1.45*0*01, 
?1=@55* 0.10 (extrapolating slightly the apparent decrease in estimates with increas- 
%Order), c ~ ~ , ~  = 2 - 6 f  0.1 and p2,1 = 1.3 f 0.1. These values compare favourably with 
be above from Baker-Hunter analysis. 

+O% 

5'3J. Analysis of the Crossover function. The crossover function, defined in equation 
('IiideShibeS the effect of small exchange anisotropy on the scaling functions. This is 
+ed in considerable detail by Pfeuty et a1 (1974). These authors presented 

series from which one can infer eighth-order series for the axial- 
amsotrOPY CTOSsover function On the FCC net. Using completely general results for the 
htb-order susceptibility series in the presence of both or either rhombic and axial 
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Table 5. PadC-approximant analysis of the Baker-Hunter transformation of he 
the reduced second moment, @z/x, Of the s=co Heisenberg model. 
~,(co)=0.31491 is employed in the transformation. The Pad6 tables for 2 
Pz,I are given sequentially. VI A,, Pq& a 

M \ 2  
3 4 5 6 1 

\ 

2 1,437 1.413 1.433 1.452 1.439 1-438 
3 1.422 1-433 1.444 1.444 1.438 
4 1.371 1.453 1-444 1.444 
5 1.431 1.439 1.438 
6 1.432 1.438 
7 1.436 

- 

2 3 4 5 6 7 

2 0.67 - 0.69 0.53 0.83 - 
3 0.82 0.69 0.61 0.61 - 
4 - 0.52 0.61 0.61 
5 - 0.75 0-86 
6 - 0-81 
7 0.70 

PZ.0 

2 3 4 5 6 1 

3.20 2.93 2.65 2.86 2.88 2 2.88 
3 3.06 2.92 2.78 2.78 2.88 
4 3.39 2-64 2.78 2.78 
5 2.99 2-86 2.88 
6 2.96 2.87 
7 2-91 

PZ.1 
\ 

Y 2  3 4 1 5 6 
M / - - 1.15 1.24 3-72 - 2 1.18 

3 1.23 1.14 1.23 1.23 
4 - 1.23 1-23 1.23 
5 - 1.75 3.49 
6 - 2.29 
7 0.43 
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Table 6. As in table 5 except that Ke@)=O.31496, rather than Kc(oo)=0.31491 is 
employed in the Baker-Hunter transformation. In the [4/5] approximant there are two 
secondary poles with AI = 0.36 and 0.73. 

2v 

2 3 4 5 6 7 

2 1-439 1.417 1.436 1.462 1.452 1.468 
3 1-425 1.436 1.449 1.455 1.457 
4 1-371 1.463 1.455 1.464 
5 1-436 1.452 1.457 
6 1.435 1.471 
7 1-451 

2 3 4 5 6 7 

2 0.67 - 0.69 0.50 0.60 0.39 
3 0.80 0.68 0.60 0.56 0.53 
4 - 0.49 0.56 0.36 
5 - 0.60 0.53 
6 - 0.34 
7 - 

112.0 

2 3 4 5 6 7 

2 2.86 3.15 2-90 2-53 2.69 2.38 
3 3.03 2.89 2.72 2.64 2-61 
4 3.39 2-51 2.64 2.44 
5 2.93 2-69 2.61 
6 2.94 2.30 
7 - 

P2.I 

2 3 4 5 6 7 

2 1.20 - 1.17 1.34 1.33 1.21 
3 1-23 1.17 1.28 1.31 1.30 
4 - 1.33 1-31 0.81 
5 - 1.41 1-30 
6 - 1.23 
7 - 
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~~ 

7 1 - 4 4  0.62 2.78 1.23 
8 1.450 0.59 2.71 1.27 
9 1.452 0.58 2.69 1.29 

10 1.453 0.57 2.67 1.30 

aiso@opy (camp and Van Dyke 1974) we have derived tenth-order series for the 
crossover functions. Herein we have analysed the axial-anisotropy aossover function 
for which the series coefficients are 0, 4.0, 14.9333333333, 52.5866666667, 

through ten, respectively. 
In table 8 the Pad6 analysis of the Baker-Hunter transformation of ~-‘(ax/ag)],=, 

is presented. The Pade table is quite ‘noisy’--evidently the mossover series is more 
poorly converged than the susceptibility and moment series. There is significant order- 
to-order variation, as well as differences between the ‘corner-of-the-table’ and ‘centre- 
of-the-table’ estimates. The estimates for A1 are low, and apparently rising with 
increasing order toward AI = 0-5 f 0.1. The crossover-exponent estimates are consis- 
tent with the estimate 4 = 1 *30* 0.02. We may roughly estimate that the amptitudes 
X O , ~  and 

We can circumvent the problem of choosing &(CO) by analysing the ‘renor” 
series obtained by dividing the series coefficients for [d~ /dg] ,=~  term-by-term by those 
for x ( a ) .  This series has critical point at &= 1.0 with dominant exponent 
Y +d f 1 - Y = 1 + 4 (Pfeuty et al 1974). Further, if [dx/ag]g=o and x(m) have con- 
fluent secondary poles with exponents y-A1 and y+d -Al, respectively, the renor- 
malized series has a secondary pole at K,= 1.0 with exponent q5-k 1-Al.  We have 
studied the renormalized series for axial anisotropy. To twelve-place accuracy the first 
eleven series coefficients are 0.0, 1.0, 2.10909090909, 3.305154639189 

11-7135278387, and 13.2701985709. 
The analysis of the Baker-Hunter transformation (with, exactly, K c =  1) of *e  

renormalized series for q5 is given in table 9. The Pad6 table is strikingly better thantbat 
in table 8. Here one would estimate d, = 1-31::::; and AI = 0-47+::& However, it is 
worth noting that those approximants which reproduce the best estimate hl=0*54 
from analysis of ~ ( 0 0 )  and &(CO) yield consistently estimates for dJ in the range 
4 1.28-1.29. Au. the approximants with d, < 1.25 should probably be disregarded 
since they do not reproduce a secondary pole. 

In summary, although the series is not well behaved, we are able to estimate that the 
crossover exponent d, is in the range $ = 1-28-1.32 and that the uxdon e?nent 
lies in the range AI ~ 0 . 4 7  (4 = 1,32)-0.55 (4 = 1-28). The estimate for dJ in 

etai 1974) is considerably different from previous series estimates, 9 = 1-25 (pfeuv 
and q5 = 1.263 (Camp and Van Dyke 1974). At present we do not knowhow muchof 
ths difference is real-i.e., due to corrections not taken into account in previous 
analyses-and how much is due to the poor behaviour of the series. we planinaIater @eter 
publication (Camp and Van Dyke 1975b) to take up the full ques~onof 

179~721481481,604,358772488,2O11~9401 1993,6651.25757867,21875.o82619g7 
71658.5001641, and 233999.204149 (to twelve-place accuracy) for orden zero 

are, respectively, 2.8 f 0.3 and 1.2 f 0.3. 

4.5726050141 1,5*90182303221,7~28551198337,8~71806796502,10~19~~~~~6~O~ 
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Table 8. Pad6-approximant analysis of the Baker-Hunter transformed series for 
h-’ a ~ / a g ] ~ = ~ .  The critical point is assumed to be Kc(m)=0.31491. 

\ 2 3 4 5 6 7 

2 1.335 1.226 1.396 1-260 1.272 1.274 
3 1.204 1.405 1.283 1.320 1.305 
4 1.277 1-262 1.321 1.308 
5 1.283 1.275 1.305 
6 1.273 1.279 
7 1.332 

\” 2 3 4 5 6 7 

~ 

- - - 2 0.32 0.86 0.31 
3 - 0.31 0.55 0.36 0.43 
4 - - 0.36 0.41 
5 - 0.81 0.43 
6 
7 

- - 
- 

2 3 4 5 6 7 

2 2.25 3.73 1 e44 3.59 3.43 3.41 
3 3.76 1-34 3.21 2.54 2.83 
4 3-35 3-56 2.52 ‘2.79 
5 3.29 3-38 2.84 
6 3.41 3.32 
7 2.52 

\ “ 2  3 4 5 6 7 
M 

- - - 2 1.68 0.25 2.48 
3 - 2.58 0.79 1-40 1.16 
4 - - 1.43 1.18 
5 - 0.78 1.16 
6 
7 - 

- - 
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Table 9. PadC-approximant analysis of the Baker-Hunter transfomed, renorm- 
for the crossover exponent, 4. The exact critical point K,= 1.0 is employed 

N- 

series 

4 

3 4 

M\ 
5 6 7 

2 1.379 1.335 1.269 1.287 1.380 1.184 
3 1.288 
4 1.274 1.287 1.319 1.320 
5 1.137 1.382 1.309 
6 1.287 1.192 
7 1.248 

1.269 1.320 1.319 1.309 

N 
2 3 4 5 6 7 

2 0.45 0.46 0.61 0.53 0.40 - 

M 

3 0.52 0.61 0.46 0.47 0.48 
4 0.57 0.53 0.47 0.46 
5 - 0.40 0.48 
6 0.70 - 
7 - 

anisotropy crossover scaling in the spin-infinity Heisenberg susceptibility and c o d a -  
tion function. The question of corrections to scaling will also be dealt with m m  
thoroughly therein, 

6. summary 

Confluent corrections to scaling are an important effect in the spin-infinity Heisen. 
berg model, but apparently are absent at S = 4. In this respect the Heisenberg mode' 
mirrors the behaviour of the spin4 Ising model for which the amplitude of C O r r e ~ o o s  
to scaling decreases continuously with decreasing S, and apparently vanish at s=4(saur 
et cf.l 1975, Camp and Van Dyke P975a, Camp et a1 1975). However, the Hehenberg 
SeneS are not as 'clean' as those of the Ising model. In particular non-coduent 
corrections are apparently much more important (especially at S = i) than in the ISmg 
model. Thus although the 'best' estimates ~ ( i )  = 1-42-14 and y(~0)=1.41-1'~ for 
the Susceptibility exponents closely overlap, the scatter, in y(i) pdCUl@, is so 
th:t we can only claim that inclusion of confluent corrections in ~ ( 0 0 )  leads toeVQnentr 
?'(d and ?(a) which are probably consistent with universality. Further WOrk On * 
Possibility of non-confluent corrections is called for, although the prosped success 

are rather poor using ill behaved ninth-order series. Perhaps renorm*tion?OuP 
r " d s  can be used to investigate the effect of other competing fixed Points, ''$: 
be shown to lead to non-confluent singularities. In this regard, it is Perhap 
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mbgthat the relative stability of the cubic fixed point and the Heisenberg fixed point 

ne correction exponent A1 = 0-54 * 0.10 is consistently reproduced in all three 
p c o  functions analysed: x(a), &(a) and x(Q-'[dx(oo)/dg]g=o. The 'best' previous 
S=coestimate v=O-717*0*008 (Ferer et a1 1971) for the correlation-length expo- 
oentbin good agreement with the value Y = 0.725 * 0.015 estimated herein. However, 
the previous estimates 4 = 1.25-1.26 (Pfeuty et a1 1974, Camp and Van Dyke 1974) 

been completely resolved (Aharony and Bruce 1974). 

"iderably lower than our central estimate 9 = 1-30* 0.03. 
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